71 research outputs found

    An Entropy-Based Analysis of GPR Data for the Assessment of Railway Ballast Conditions

    Full text link

    Imaging of Scarce Archaeological Remains Using Microwave Tomographic Depictions of Ground Penetrating Radar Data

    Get PDF
    The Romano-British site of Barcombe in East Sussex, England, has suffered heavy postdepositional attrition through reuse of the building materials for the effects of ploughing. A detailed GPR survey of the site was carried out in 2001, with results, achieved by usual radar data processing, published in 2002. The current paper reexamines the GPR data using microwave tomography approach, based on a linear inverse scattering model, and a 3D visualization that permits to improve the definition of the villa plan and reexamine the possibility of detecting earlier prehistoric remains

    An evolutionary approach to modelling concrete degradation due to sulphuric acid attack

    Get PDF
    Concrete corrosion due to sulphuric acid attack is known to be one of the main contributory factors for degradation of concrete sewer pipes. This paper proposes to use a novel data mining technique, namely, evolutionary polynomial regression (EPR), to predict degradation of concrete subject to sulphuric acid attack. A comprehensive dataset from literature is collected to train and develop an EPR model for this purpose. The results show that the EPR model can successfully predict mass loss of concrete specimens exposed to sulphuric acid. Parametric studies show that the proposed model is capable of representing the degree to which individual contributing parameters can affect the degradation of concrete. The developed EPR model is compared with a model based on artificial neural network (ANN) and the advantageous of the EPR approach over ANN is highlighted. In addition, based on the developed EPR model and using an optimisation technique, the optimum concrete mixture to provide maximum resistance against sulphuric acid attack has been identified

    A cross-sectional study on the flood emergency preparedness among healthcare providers in Saudi Arabia

    Get PDF
    This study used a descriptive cross-sectional methodology to measure healthcare workers’ knowledge, attitudes, perceptions, and willingness to respond to a flood scenario in Saudi Arabia. A validated survey was distributed to collect data using a convenience sampling technique through multiple social media platforms. A total of 227 participants were included in this study: 52% of them were aged between 26 to 34 years, 74% were residents from Riyadh, and 52.4% worked in nursing divisions. A significant number of respondents (73.2%) had positive perceptions towards their hospitals’ ability to provide an effective response to a flood, 89% were willing to report to work following a flood, and 90% of participants reported the need to develop both guidelines and training for flood disaster preparedness. Preparation and successful flood mitigation in the hospital setting requires staff that have both knowledge and training in emergency management. One way to obtain such readiness is through competency-based training, including both table-top and full-scale live exercises. Although the willingness to respond to such a flooding emergency was high among staff, the development of guidelines and educational programs is needed in order to develop the competencies and skills sets to improve disaster preparedness response and preparedness efforts

    Satellite remote sensing and non-destructive testing methods for transport infrastructure monitoring: advances, challenges and perspectives

    Get PDF
    High temporal frequency monitoring of transport infrastructure is crucial to prioritise mainte-nance and prevent major service disruption or structural failures. Ground-based non-destructive testing (NDT) methods have been successfully applied for decades, reaching very high standards for data quality and accuracy. However, routine campaigns and long inspection times are re-quired for data collection and their implementation into reliable infrastructure management systems (IMSs). On the other hand, satellite remote sensing techniques, such as the Mul-ti-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) method, have proven effective in monitoring ground displacements of transport infrastructure (roads, railways and airfields) with a much higher temporal frequency of investigation and the capability to cover wider areas. Nevertheless, the integration of information from i) satellite remote sensing and ii) ground-based NDT methods is still a subject to be fully explored in civil engineering. This paper aims to review significant stand-alone and combined applications in these two areas of endeavour for transport infrastructure monitoring. Recent advances, main challenges and future perspectives arising from their mutual integration are also discussed
    corecore